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Toward a Pathophysiology of Attention-

Deficit/Hyperactivity Disorder

F. Xavier Castellanos, MD

Summary: Converging insights into attention-deficit/hyperactivity disorder (ADHD) support the

notion that ADHD is best characterized behaviorally as a disorder of self-regulation or executive

functioning. Anatomic neuroimaging studies suggest that the relevant regulatory circuits include

the prefrontal cortex and the basal ganglia, which are modulated by dopaminergic innervation

from the midbrain and by stimulant medications. The emerging model proposed in this review

encompasses a developmental perspective into this common condition.

Introduction

n an abbreviated recapitula-

tion of the hold of Galen’s

teachings on western medi-
cine throughout the Middle Ages,
psychoanalytic theories held sway
in psychiatry for half a century de-
spite the nearly complete absence
of empirical verification. Three
major influences have con-
tributed to a revolution in psychi-
atric perspectives beginning with
the birth of clinical neuroscience
and neuropharmacology in the
1960s. The 1980 publication of
DSM-III! codified the shift toward
an atheoretical syndrome-based
diagnostic system that has acceler-
ated psychiatric research by pro-
viding criteria for reliable diag-
noses. Coincidentally, the
availability of neuroimaging tech-
niques has allowed practical ac-
cess to the living human brain for

the first time, producing a critical
mass of researchers and clini-
cians. Accordingly, it is now feasi-
ble to begin proposing theoreti-
cal, albeit heuristic, models of
psychiatric disorders. Such primi-
tive models are demonstrably
“false” in that they necessarily gloss
over almost all of the immense
complexity of the brain. However,
proposing such models can be use-
ful if they lead to specific testable
predictions. Only by proposing
and rejecting explicit and falsifi-
able theories can the momentum
toward a scientific understanding
of normal and abnormal brain
function be continued.

This review is an attempt to
formulate a schematic model of
attention-deficit/hyperactivity
disorder (ADHD) based on clini-
cal and basic science observa-
tions. The scope of this model is
limited to central dopaminergic

Child Psychiatry Branch, National Institute of Mental Health (NIMH), Bethesda, MD.

Reprint requests and correspondence to: F. Xavier Castellanos, MD, 10 Genter Drive,

Room 6N240, Bethesda MD 20892-1600.

© 1997 Westminster Publications, Inc., 708 Glen Cove Avenue, Glen Head, NY 11545, U.S.A.

systems and their regulation of
prefrontal circuits, although
there is substantial evidence that
other systems (especially nora-
drenergic and adrenergic) are
also involved.

ADHD is the most common
psychiatric condition affecting
children, estimates of prevalence
in childhood ranging from
5-10%.2 The specific definition
of ADHD has been modified
three times in 14 years by the
American Psychiatric Associa-
tion,!34 and the diagnosis must
still be made exclusively by his-
tory, for no laboratory or psycho-
logical test or battery is available
that provides sufficient sensitivity
and specificity. However, there is
increasing agreement that ADHD
represents a “real” condition, not
merely an artifact of unreason-
able expectations and crowded
classrooms,58 although such
agreement is far from unani-
mous.%10

The most recent revision of
the diagnosis of ADHD in DSM-IV
includes separate diagnostic crite-
ria for symptoms of inattention
and hyperactivity/impulsivity.
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Thus ADHD is now diagnosable
as three subtypes: predominantly
inattentive, predominantly hyper-
active/impulsive, or combined
type.!! This differentiation of two
distinct symptom clusters or di-
mensions represents a clear im-
provement over the DSM-III-R def-
inition of ADHD, which combined
symptoms of inattention, hyperac-
tivity, and impulsivity.?

Although estimates of the
prevalence of ADHD vary widely,
the diagnosis and treatment of
ADHD with stimulants, princi-
pally methylphenidate, has risen
dramatically from 1988 to 1995, as
monitored by the Drug Enforce-
ment Administration. Although
the increase seems to be ascrib-
able to increases in numbers of
prescriptions written rather than
to illegal diversion, it has been
widely quoted in the lay press as
cause for alarm.!? The most vocal
proponents of stimulant treat-
ment for ADHD have been the
parents of children with ADHD,
but their arguments have been
weakened by the imputation of
self-interest and by the absence of
a coherent explanation for the
therapeutic utility of psychostimu-
lants and an understanding of
their limitations.

Attempts at understanding
ADHD have generally begun with
the efficacy of stimulants in re-
versing many ADHD symptoms
for short periods of time.12-16
Since stimulants typically produce
motor hyperactivity in laboratory
animals, animal models were
sought in which the stimulant ef-
fects could be characterized as
“paradoxical.”” The demonstra-
tion that dextroamphetamine
had similar qualitative effects in
healthy children and adults as in
children with ADHD1819 empha-
sized the point that psychiatric
disorders are not easily modeled
in nonhuman species. Thus, de-

spite some interesting partial
models,20-26 the field has not pur-
sued this line of work with much
vigor. Rather, most studies over
the past two decades have sought
to better characterize ADHD in
humans, primarily in children.
Based on an admittedly selective
reading of this voluminous litera-
ture, the following conclusions
can be extracted.

e ADHD is a common although
heterogeneous condition. One
element in its heterogeneity is
the frequent co-occurrence of
other conditions (comorbidity).

e “Pure” ADHD may be best char-

acterized as a risk factor for

other psychiatric and psychoso-
cial morbidity such as opposi-
tional defiant disorder, conduct
disorder, and substance abuse.

Pure ADHD has some negative

prognostic import, but this is

magnified exponentially by the
presence of other comorbid
conditions.

ADHD is a developmentally sen-

sitive disorder, representing at

least in part a “neurodevelop-
mental lag.” Impairment associ-
ated with ADHD symptoms can
continue throughout life, al-
though the specific symptoms
and the spheres of functioning
that they affect often change.

The risk of serious morbidity

from ADHD and associated con-

ditions is highest during adoles-
cence.

Neither specific deficits in at-

tention nor in motor control are

adequate to explain the range
and variety of ADHD symptoms.

The psychological construct of

“executive functions” provides a

useful unifying framework from

which to describe ADHD symp-
toms throughout life.

The brain circuits that subserve

executive functions include the

prefrontal cortex, the basal gan-

glia, and the cerebellum. These
circuits are modulated by mono-
amine neurotransmitters, prin-
cipally dopamine, which affect
the “signal-to-noise” ratio of
neuronal communications.

Modeling ADHD requires an

understanding of normal brain

development, thc most dra-
matic feature of which is a rela-
tive increase in the influence of
inhibitory to excitatory effects
beginning at toddlerhood. This
is paralleled by decreases in
brain dopamine concentrations.
¢ Dopamine metabolite concen-
trations in cerebrospinal fluid
are greatest in the most hyper-
active ADHD boys, consistent
with findings of a “neurodevel-
opmental lag.”

e Prefrontal circuits, particularly
in the right hemisphere, have
been implicated by neuroimag-
ing studies in ADHD.

* Delayed maturation of pre-
frontal circuits into the third
decade of life is consistent with
the improving prognosis for
adults with ADHD.

e Treatment strategies in ADHD
must be grounded in a develop-
mental perspective.

Heterogeneity

As noted above, estimates of
the prevalence of ADHD can vary
from 2% to 18% of school age
children.227 This broad range re-
flects differences in methodology
as well as the heterogeneity of the
underlying condition. This het-
erogeneity can be observed
within the same family?® or within
the same individual. For example,
I evaluated a 15-year-old female
who had been noted to be well
above average in both hyperactiv-
ity and intelligence during her ¢l
ementary school years although

}
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Toward a Pathophysiology of Attention-Deficit/Hyperactivity Disorder

she did not display any obvious
deficits in attention. By the time
her distractibility, disorganiza-
tion, and forgetfulness became
impairing in middle school, her
obvious motor symptoms had di-
minished. Academic and social
failure had contributed to depres-
sion and anxiety, for which she
was unsuccessfully treated for
nearly 2 years with intensive psy-
chotherapy and antidepressants.
Detecting the subtle but clear evi-
dence of ADHD in her past and
present functioning allowed her
to bencfit pharmacologically
from the addition of a stimulant
to her antidepressant, and psy-
chotherapeutically as a result of
increased self-awareness. It also
resulted in the discovery that the
adolescent patient’s mother had
experienced similar symptoms for
her entire life, for which she had
coped as an adult by repeatedly
refusing job promotions.

Another type of heterogeneity
that needs to be considered when-
ever the diagnosis of ADHD enters
a differential diagnosis is attribut-
able to comorbidity. Approx-
imately one quarter of children
with ADHD also have specific
learning disorders in reading,
math, and written or spoken lan-
guage, although estimates range
from 6% to 92% in referred sam-
ples.2930 Current practice is to di-
agnose and treat each disorder in-
dependently. However, there is at
least one interesting report that
distinguished children with
ADHD alone from those who had
ADHD as well as reading disorder
(dyslexia). The authors con-
cluded that the latter group did
not have the same neuropsycho-
logical deficits as the pure ADHD
group, suggesting that distractibil-
ity and inattention in the class-
room had developed as a conse-
quence of a primary disability in
learning how to read.3!

Developmental Course
of ADHD

As a disorder identified pri-
marily with pediatric patients, it is
not surprising that ADHD raises
several developmental issues.
First, a number of observations
support the conclusion that
ADHD represents at least in parta
“neurodevelopmental lag.”? For
example, children with ADHD
trail about 2 years behind age-
peers in social development, as
measured by the Vineland Scale.3?3
A similar gap of 2-3 years was
found in cognitive tests believed
to tap prefrontal functions in 8- to
9-year-olds, and in 10- to 12-year-
olds.3435 Thus both controls and
ADHD patients seemed to be pro-
gressing at the same rate but with
a relatively constant lag. Second,
the symptoms of ADHD change
over time. The most salient char-
acteristic of the young child with
ADHD is motor hyperactivity,
which decreases over time inde-
pendent of treatment.?5%7 By con-
trast, symptoms of inattention
show little regression over time.37
In fact, it is not uncommon for
symptoms of inattention to be dif-
ficult to discern in the elementary
grades, only to become more
manifest as the complexity of aca-
demic challenges increases.

A third developmental issue
concerns the natural history of
the disorder which can be accu-
rately described only by using lon-
gitudinal follow-up studies. Man-
nuzza and Klein performed the
most rigorous study of this genre
by following nearly 100 subjects
for more than 2 decades, along
with a socioeconomically matched
control group.3® Their group
found that 52% of the subjects
who continued to display ADHD
in adolescence met criteria for
substance abuse or criminal be-
havior.3® Fortunately, when sub-

jects were interviewed in their
20s, the percentage who met cri-
teria for antisocial personality dis-
order had decreased from 25% to
15%.38 These results are consis-
tent with other findings that ado-
lescents with ADHD are at a much
increased risk for alcohol and sub-
stance abuse#-13 and that they are
more likely to be involved in mo-
tor vehicle accidents.*45 The risk
of substance abuse is particularly
high when ADHD is combined
with aggression or conduct disor-
der,#6 even when detected in early
childhood.4748 Interestingly, 18%
of subjects in the Mannuzza and
Klein study owned small busi-
nesses versus 5% of controls,?8
leading to speculation regarding
the potential benefits of high lev-
els of activity and willingness to
take risks for entrepreneurship.

Executive Functions and
the Neuropsychology
of ADHD

While the potential utility of
ADHD-related traits in some adult
endeavors is intriguing but un-
proven, ADHD rarely offers much
benefit during academic pursuits.
Neuropsychological approaches
have been employed in an at-
tempt to isolate the cognitive
deficit or deficits underlying
ADHD so as to improve diagnosis
and implement more targeted
treatments.

Early neuropsychological
studies in ADHD were shaped by
the demonstration that stimulants
robustly improved performance
on the continuous performance
test (CPT).4 The classic CPT pri-
marily measures vigilance, de-
fined as the ability to respond ap-
propriately to a rare stimulus.
While the studies reporting group
differences on vigilance tasks in
ADHD are too numerous to cite,
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not all patients with ADHD dis-
play deficits in vigilance or in
other measures of attention.50
The search for neuropsycho-
logical deficits that would corre-
spond to the symptoms of ADHD
has come to focus on the concept
of executive function,?! which in
turn has derived from clinical in-
vestigations of patients with le-
sions affecting prefrontal cir-
cuitry.5253 Executive functions
have been defined as “control
processes . . . [involving] inhibi-
tion and delay of responding [al-
lowing an individual to] initiate,
sustain, inhibit/stop, and shift.”53
Also associated with the construct
of executive function are the abil-
ities to prioritize, organize, and
strategize.”? The concept of exec-
utive dysfunction captures the pa-
tient who has ADHD, who as
noted in the title of a popular
book, has difficulty “Putting on
the Brakes.” The similarities be-
tween patients with ADHD and
those who have gross lesions of
prefrontal brain have long been
noted, but so too have the limita-
tions of this crude comparison 558
Over the past decade, however, a
more nuanced understanding of
the subcortical circuits that sub-
serve frontal functioning has
emerged, catalyzed by the work of
Alexander and colleagues.?:60

Prefrontal Circuits

In 1986, Alexander et al
pointed out that a number of dis-
crete somatotopically distributed
circuits could be delineated con-
necting prefrontal afferents to
basal ganglia relay stations, which
then synapse at thalamic nuclei,
which in turn feedback to the cor-
tex.5 This cortical-striatal-thala-
mic-cortical circuit provides both
positive and negative feedback to
other cortical regions and is be-

CLINICAL PEDIATRICS

tangular box, with excitatory out-
puts to the caudate nucleus and
to a small but key structure known
as the subthalamic nucleus
(STN).6568 Neuronal signals that
travel from the caudate directly to
the medial globus pallidus (also
known as the internal segment of
the globus pallidus and abbrevi-
ated GP;) result in a net amplifi-
cation via disinhibition of thala-
mic excitatory fibers, which
feedback to the original cortical
output neuron or o other corti-
cal regions. The so-called indirect

lieved to serve as the anatomic
substrate for many of the execu-
tive functions. In the decade
since, this circuit has been the ob-
ject of intense study in rodents,
nonhuman primates, and hu-
mans.5164 It is still far from com-
pletely understood, but it is now
possible to draw simplified circuit
diagrams that can at the very least
lead to testable predictions. Such
an admittedly simplistic diagram
is shown as Figure 1. The elegant
complexity of the prefrontal cor-
tex is schematized as a single rec-

Cortex

+/-L

VTA

Caudate

Q_________

\
GP, |

:

O

Thalamus

Figure 1. Schematic of a prefrontal-striatal-thalamic-cortical circuit. Abbreviations: VTA = ventral
tegmental area; SN = substantia nigra; GP. = globus pallidus external segment, also known as lateral
GP: GP; = internal segment or medial GP; STN = subthafamic nucleus. Efferents from the cortex, sub-
thalamic nucleus, and thalamus are all excitatory (glutamate). Efferents from the caudate and from
hoth giobus pallidus segments are inhibitory (GABA). The net effect of dopamine released from the
substantia nigra via the nigral-striatal circuit is to increase the positive feedback from the thalamus to
the cortex through either the direct pathway (caudate to GP;) or via the indirect pathway (which in-
cludes the GP, and STN). Dopamine released from the VTA to the cortex affects signal-to-noise of
other cortical inputs. This schematic differs from prior versions in deemphasizing the flow from the
GP, to the STN (personal communication, Dr. D. Kreiss, September 1996).
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pathway includes the lateral
globus pallidus (or external GP,
thus GP.) and the STN. Neuronal
traffic through this pathway re-
sults in further increases in the
tonic level of inhibition produced
by this system. This can be said to
be the brain’s braking mecha-
nism.b? Inadequate inhibitory
tone in the indirect pathway, or
excessive activation via the direct
pathway, has been posited for a
number of psychiatric disorders,
including ADHD, Tourette’s dis-
order, and obsessive compulsive
disorder.707® This lack of speci-
ficity is not altogether surprising,
since the combination of these
threc disorders is not rare. The
factors that determine whether
one, two, or all three disorders
will manifest in a given individual
are not yet known, although it is
believed that the monoamines,
particularly dopamine and sero-
tonin, are involved. The links
among the monoamines are im-
portant and complex but still
poorly understood. Although this
review focuses exclusively on the
dopamine system, there is also a
great deal of evidence forarole of
noradrenergic and adrenergic in-
fluences in ADHD.16:74

Stimulants and
Dopamine Terminals

After synaptic release, dopa-
mine, like all monoamines, is pri-
marily deactivated by reuptake
into the presynaptic terminal via a
specific transporter, not surpris-
ingly called the dopamine trans-
porter (DAT).”> Once inside the
terminal, monoamines are
repackaged into synaptic vesicles
through a nonspecific mono-
amine vesicular transporter.
Methylphenidate blocks the
dopamine and norepinephrine
transporters, whereas ampheta-

JULY 1997

mines block the vesicular trans-
porter, thus affecting not only
dopamine and norepinephrine
but also serotonin. The net imme-
diate effect of either type of stim-
ulant is an increase in the synaptic
concentration of monoamines,
which produces an increased
postsynaptic effect. However,
monoaminergic circuits are
tightly regulated, both by long-
distance feedback and local fecd-
back from inhibitory dopamine
receptors located in the presynap-
tic nerve terminal. These autore-
ceptors can rapidly regulate the
level of synaptic neurotransmitter
release. The net effect of a partic-
ular dose of a given stimulant is a
complex function of multiple ele-
ments, including pharmacoki-
netic factors.76.77

Dopamine and the
Cortical-Striatal-
Thalamic-Cortical
Circuit

The most convincing evidence
for the importance of dopamine
in normal functioning within pre-
frontal-basal ganglia circuitry
comes from Parkinson’s disease,
in which symptoms of tremor, aki-
nesia, and rigidity emerge after
the death of the majority of
dopaminergic neurons in the sub-
stantia nigra (SN in Figure 1).89
Reversal of this dopaminergic
deficit, by the administration of
levodopa or of dopaminergic ago-
nists, relieves symptoms, provided
a few dopaminergic terminals re-
main, but relapse has generally
been inexorable. As depicted in
Figure 1, the deficit in dopamine
results in excessive inhibition
through the indirect pathway, mo-
tivating a return to neurosurgical
ablation of neurons in posterior-
Jateral medial globus pallidus for
patients with end-stage Parkin-

of Attention-Deficit/Hyperactivity Disorder

son’s.7881 These neurosurgical
studies are also obtaining unique
data regarding basal ganglia elec-
trophysiology that will further elu-
cidate these intricate circuits.5283

Dopaminergic influence ex-
tends beyond motor control, as
concluded by Schultz and col-
leagues on the basis of ¢lectro-
physiologic studies in primates.®*
They found that some “dopamine
neurons and neurons in the ven-
tral striatum only respond to re-
ward when it is not entirely pre-
dictable, such as during the
trial-and-error learning of tasks
with specific constraints and dur-
ing self-initiated movements with-
out preceding reward-predicting
stimuli. . . . It appears . . . that the
response is due to the salient,
alerting stimulus property of pri-
mary reward during learning. 885
Salience and reward are often
confounded, but when they are
experimentally dissociated, it is
salience that is dopaminergically
based.86-88

While the dopamine cells in
the substantia nigra innervate pri-
marily the striatum, the ventral
tegmental area (VTA in Figure 1)
contains dopaminergic cells that
diffusely innervate the frontal
cortex, terminating primarily on
dendritic spines of cortex pyrami-
dal cells.® Work in primates sug-
gests that dopamine 1 involved in
“direct gating of selective excita-
tory synaptic inputs to prefrontal
neurons during cognition.”9! In
an elegant demonstration of
these effects in normal humans,
volunteers underwent blood flow
measurements with positron-
emission tomography after dou-
ble-blind placebo and dextroam-
phetamine while they performed
two distinct tasks. In both cases,
amphetamine increased the sig-
nal-to-noise ratio of cortical acti-
vation, with increases in those re-
gions previously found to be
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activated by the specific task, and
decreases in other uninvolved re-
gions.92 It is of particular interest
that VTA neurons in human and
primate, unlike those that em-
anate from the substantia nigra,
lack autoreceptors,%3 which ex-
plains why the prefrontal
dopaminergic system is much less
susceptible than the striatum to
up- or down-regulation of
dopamine receptors by dopamin-
ergic agonists or antagonists.%97
It seems reasonable to conclude
that it is the lack of susceptibility
of this circuit to tolerance that
provides the basis for long-term
stimulant treatment.”®

Dopamine and
Development

The proposition that motor
hyperactivity in children with
ADHD represents a type of re-
verse Parkinson’s is clearly sim-
plistic. However, several lines of
evidence make this possibility
worth considering. Of the three
monoamines (dopamine, norepi-
nephrine, serotonin), dopamine
is the most developmentally ac-
tive. Dopamine metabolite con-
centrations in cerebrospinal fluid
(CSF) peak at about age 2 and de-
cline fairly rapidly over the next
dozen years.% Brain blood flow
and metabolism also decline dur-
ing this age range,!® and so does
the overall level of motor activity.
Activity levels of normal children
have not been compared to CSF
dopamine metabolites, but the
supposition that the two are posi-
tively correlated has been sup-
ported in studies carried out in
adults101.192 and in animals.193 Tt
seems fortuitous that young chil-

dren would be supplied with a sur-

feit of the particular monoamine
neurotransmitter that facilitates
exploration of their environment

and that the concentrations of
this substance would generally de-
crease as they become older and
less adventurous.

Dopamine and ADHD

Attempts to characterize mono-
amines in ADHD have been frus-
trating because of the large pe-
ripheral contribution in blood
and urine. Concentrations of the
principal dopamine metabolite,
homovanillic acid (HVA), in CSF
are more reflective of central
dopamine function, although it is
not possible to pinpoint the
source of differences in metabo-
lite levels. At the NIMH, my col-
leagues and I were initially sur-
prised to find that CSF HVA
concentrations were significantly
and positively correlated with the
degree of hyperactivity in 29
boys.** We found the same signif-
icant correlation in an indepen-
dent sample, and we also found
that the CSF HVA concentration
obtained during a drug-free base-
fine level in the combined sample
(n=45) was the best predictor, af-
ter baseline symptom severity, of
therapeutic response to methyl-
phenidate, dextroamphetamine,
or pemoline.1% With all three
drugs, the boys with the greatest
CSF HVA concentrations had the
best responses to treatment.
These results were consistent with
an earlier study that documented
postamphetamine decreases in
CSF HVA that were highly corre-
lated with behavioral improve-
ment.!9% Combined with the as-
sumption (based on the animal
literaturel97) that most CSF HVA
originates in the striatum, our re-
sults suggest that motor hyperac-
tivity is associated with larger con-
centrations of HVA in the
caudate, as would be found in a
neurologically younger child.

Our data are also consistent with
the conclusion that stimulant
treatment is associated with a de-
crease in CSF HVA, presumably
through decreases in dopamine
release from the substantia nigra.
However, even if we were to con-
clusively demonstrate this rela-
tionship, the inherently nonlocal-
izing nature of CSF studies means
that we could not distinguish be-
tween a true effect and epiphe-
nomenon. De-confounding these
results at the molecular level will
require advances in our under-
standing of the genetics of
ADHD.

Genetics of Dopamine
and ADHD

Specific molecular abnormali-
ties have been proposed in ADHD
in the dopamine transporter,108
and in the D4 dopamine receptor
subtype.19® The dopamine trans-
porter report was especially inter-
esting because a mouse knockout
of the same gene displays extreme
hyperactivity.''® However, this
finding was not replicated by an-
other group,!® although they did
find that the same D4 dopamine
receptor allele that had been as-
sociated with novelty seeking in
adults!11112 was significantly asso-
ciated with ADHD. Pending on-
going attempts by several groups
to replicate this report, it is pre-
mature to speculate on the mech-
anisms of these putative geno-
types, except to note that D4
dopamine receptors are abun-
dant in globus pallidus and in
GABAergic interneurons in pre-
frontal cortex.!'3

Neuroimaging in ADHD

The other source of evidence
that supports a role for the basal

386

CLINICAL PEDIATRICS

JULY 1997

oy




ent with
mulant
th a de-
sumably
pamine
ia nigra.
Lo con-
1is rela-
onlocal-
'S means
uish be-
epiphe-
ng these
evel will
- under-
tics of

me

normali-
n ADHD
orter,108
receptor
1€ trans-
lly inter-
nockout
extreme
ver, this
d by an-
they did
opamine
been as-
eking in
1tly asso-
ding on-
1 groups
it is pre-
1e mech-
e geno-
that D4
e abun-
s and in
s in pre-

DHD

evidence
the basal

Toward a Pathophysiology of Attention-Deficit/Hyperactivily Disorder

ganglia inhibitory circuits in
ADHD comes from brain-imaging
studies. While important method-
ological issues have not yet been
fully worked out, there is an in-
creasing convergence of results
demonstrating both structural
and functional brain differences
in patients with ADHD. The most
well known have been studies that
used [‘*‘F]ﬂuoro-Q-deoxy-D-glu-
cose (FDG) positron-emission to-
mography (PET) to demonstrate
decreased frontal cerebral metab-
olism in adults with ADHD.!4
Subsequent work also detected in-
creases in right caudate metabo-
lism after amphetamine under
some conditions,!!8 although in-
consistent results in adoles-
cents!16.117 have led the authors to
explore other techniques in
ADHD. Other investigators of
brain function have measured lo-
cal cerebral blood flow, which
closely approximates neuronal ac-
tivity, with a variety of techniques
including '*3Xenon inhalation
and single photon emission to-
mography (SPECT). Decreased
blood flow has been found in
ADHD subjects in the striatum,!!8
and in prefrontal regions.!1? How-
ever, these results remain tenta-
tive becausc ethical constraints
make it difficult to obtain truly in-
dependent observations from
normal controls. A more promis-
ing technique may be blood oxy-
genation level-dependent (BOLD)
functional magnetic resonance
imaging (FMRI), which obviates
the need to use ionizing radia-
tion. A preliminary report using
this new technology has once
again shown hypoperfusion in the
right caudate, which reversed on
optimal dose methylphenidate
treatment.120

Our own group has concen-
trated on using anatomic MRI to
discern structural brain differ-
ences in 57 boys with ADHD com-

pared with 55 controls.!2! We
found that the normal boys had a
significant asymmetry of the cau-
date, the right side being 3%
larger than the left on average. In
contrast, the ADHD subjects
demonstrated no asymmetry as a
group, and the degree of loss of
asymmetry correlated with their
performance on tests of response
inhibition.!22 We also found that
the right prefrontal brain region
was significantly smaller in the
ADHD boys, while the left side did
not differ from controls. The
globus pallidus was also signifi-
cantly smaller, particularly on the
right. In addition, the volume of
the cerebellum was significantly
smaller in ADHD, and there were
significant differences in the in-
crease in ventricular volume over
time, which was consistent with a
delay in maturational changes in
the boys with ADHD. Other
groups have also found differ-
ences in caudate!2312¢ and globus
pallidus,1? although the side of
the greatest difference has not al-
ways been consistent. There have
also been a number of reports of
abnormalities in the corpus callo-
sum area,!26129 although again
the specific regions have not al-
ways been concordant from one
study to another. Taken as a
whole, however, the brain-imag-
ing studies lend substantial sup-
port for the prediction enunci-
ated in 1991 by Heilman and
colleagues that right-sided ab-
normalities of the prefrontal-
basal ganglia circuit would be
found in ADHD.13 Not all basal
ganglia structures are apparently
implicated, however; the puta-
men, which receives inputs from
primary motor cortex, has not
been found to differ in ADHD.
This again supports the linking of
ADHD and prefrontal circuits
that subserve executive func-
tions.

Hemispheric Lateralization
and ADHD

The prefrontal-striatal circuit
is bilateral, but neurologic obser-
vations in patients with neglect
syndromes suggest that the right
hemisphere may be “dominant”
in spatial awareness and in direct-
ing attention.!3-13% Many, though
not all, of the unilateral findings
from neuroimaging studies in
ADHD point to the right frontal-
basal ganglia circuit. Phenomeno-
Jogically, subtle but significant lat-
erality differences have been
extensively noted in ADHD, sug-
gesting greater dysfunction in the
right hemisphere.134143 It has
been suggested that left-sided
anatomic differences in ADHD
may be the result of a higher rate
of comorbidity for verbal learning
disorders in that sample.'?

A Tentative
Pathophysiology of
ADHD and Its
Implications

Models of ADHD that have
proposed a hypodopaminergic
state resulting in hypofunction of
the prefrontal circuitry have as-
sumed a unitary dopamine sys-
tem. The present hypothesis takes
advantage of the major differ-
ences between the two pertinent
dopamine systems. Dopamine
neurons originating in the VIA
diffusely innervate frontal cortex,
forming the mesocortical dopamine
system, which largely lacks in-
hibitory autoreceptors. These
dopaminergic terminals are ide-
ally positioned to regulate cortical
inputs, thus improving the signal-
to-noise ratio for biologically val-
ued signals. In this circuit, thera-
peutic doses of stimulants are
hypothesized to increase postsy-
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naptic dopaminergic effects and
promote the integration of rele-
vant inputs from other cortical re-
gions, thus enhancing executive
functions. Because this circuit
does not have the cellular ma-
chinery required for tolerance,
relatively constant effects can be
obtained over months or even
years.

By contrast, symptoms of hy-
peractivity/impulsivity in chil-
dren with ADHD are hypothe-
sized to be associated with relative
overactivity of the dopamine cir-
cuit, which extends from the sub-
stantia nigra to the striatum. This
nigral-striatal circuit is tightly regu-
lated by inhibitory autoreceptors
as well as by long-distance feed-
back from the cortex, and slow
diffusion of therapeutic doses of
stimulants via oral administration
is hypothesized to produce a net
inhibition of dopaminergic neu-
rotransmission. However, this
therapeutic down-regulation can
be overwhelmed if a stimulant is
delivered by intravenous or in-
tranasal routes or by rapid in-
creases in dose. Such nonthera-
peutic usage patterns are
required to produce stimulant
abuse and dependence. This ex-
plains why stimulant treatment of
cocaine addicts who are comor-
bid for ADHD with stimulants can
be effective,144145 and why thera-
peutic use of stimulants has not
been implicated as a risk factor
for substance abuse. This model is
consistent with the therapeutic
utility of very low doses of
methylphenidate!46 and with the
observation that the severity of
“rebound” hyperactivity is in-
versely related to the age of the
child147 and to the rate at which
stimulant effects decrease. It also
predicts that stimulant effects on
hyperactivity/impulsivity should
demonstrate at least partial toler-
ance. This observation has been

reported anecdotally but has not
been rigorously tested. Experi-
ments bearing on this question
are currently ongoing (personal
communication, Dr. J. Swanson,
August 1996).

Conclusion

The attention paid in this re-
view to pharmacologic effects on
neuronal circuits should not be
interpreted as implying that
ADHD is exclusively treatable
with medications. As in the case of
obsessive-compulsive disorder,
where both medications and be-
havioral treatments affect brain
function, behavioral techniques
likely evoke similar but even more
specifically targeted effects in the
brain. Behavior modification
schedules increase the salience of
socially sanctioned responses,
thus increasing the likelihood
that specific midbrain dopamin-
ergic neurons will be activated,
leading to better control of hyper-
activity/impulsivity. At the corti-
cal level, coaching cognitive
strategies!8 can assist in the ame-
lioration of executive dysfunction
associated with the symptoms of
inattention. When behavioral
supports are inadequate in either
of these dimensions of impair-
ment, as is often the case, stimu-
lant medications are able to pro-
vide additional temporary
support, albeit by different mech-
anisms. By facilitating the mainte-
nance of Barkley's “prosthetic en-
vironment,”149 comprehensive
treatment of ADHD can minimize
the risks of serious morbidity
while neurologic maturation of
prefrontal self-regulatory circuits
proceeds.150-154
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